Copied to
clipboard

G = C23×C3⋊F5order 480 = 25·3·5

Direct product of C23 and C3⋊F5

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C23×C3⋊F5, C5⋊(C23×Dic3), C32(C23×F5), C153(C23×C4), (C22×C6)⋊5F5, C62(C22×F5), (C22×C30)⋊6C4, C303(C22×C4), D5⋊(C22×Dic3), C10⋊(C22×Dic3), D109(C2×Dic3), D5.2(S3×C23), (C3×D5).2C24, (C23×D5).6S3, (C22×D5)⋊8Dic3, (C6×D5).66C23, (C22×C10)⋊8Dic3, D10.51(C22×S3), (C22×D5).105D6, (D5×C2×C6)⋊11C4, (C2×C6)⋊9(C2×F5), (C2×C30)⋊8(C2×C4), (C6×D5)⋊32(C2×C4), (D5×C22×C6).7C2, (C2×C10)⋊7(C2×Dic3), (C3×D5)⋊4(C22×C4), (D5×C2×C6).147C22, SmallGroup(480,1206)

Series: Derived Chief Lower central Upper central

C1C15 — C23×C3⋊F5
C1C5C15C3×D5C3⋊F5C2×C3⋊F5C22×C3⋊F5 — C23×C3⋊F5
C15 — C23×C3⋊F5
C1C23

Generators and relations for C23×C3⋊F5
 G = < a,b,c,d,e,f | a2=b2=c2=d3=e5=f4=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, fdf-1=d-1, fef-1=e3 >

Subgroups: 1900 in 472 conjugacy classes, 217 normal (13 characteristic)
C1, C2, C2, C3, C4, C22, C22, C5, C6, C6, C2×C4, C23, C23, D5, D5, C10, Dic3, C2×C6, C2×C6, C15, C22×C4, C24, F5, D10, C2×C10, C2×Dic3, C22×C6, C22×C6, C3×D5, C3×D5, C30, C23×C4, C2×F5, C22×D5, C22×C10, C22×Dic3, C23×C6, C3⋊F5, C6×D5, C2×C30, C22×F5, C23×D5, C23×Dic3, C2×C3⋊F5, D5×C2×C6, C22×C30, C23×F5, C22×C3⋊F5, D5×C22×C6, C23×C3⋊F5
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, Dic3, D6, C22×C4, C24, F5, C2×Dic3, C22×S3, C23×C4, C2×F5, C22×Dic3, S3×C23, C3⋊F5, C22×F5, C23×Dic3, C2×C3⋊F5, C23×F5, C22×C3⋊F5, C23×C3⋊F5

Smallest permutation representation of C23×C3⋊F5
On 120 points
Generators in S120
(1 109)(2 110)(3 106)(4 107)(5 108)(6 111)(7 112)(8 113)(9 114)(10 115)(11 116)(12 117)(13 118)(14 119)(15 120)(16 91)(17 92)(18 93)(19 94)(20 95)(21 96)(22 97)(23 98)(24 99)(25 100)(26 101)(27 102)(28 103)(29 104)(30 105)(31 76)(32 77)(33 78)(34 79)(35 80)(36 81)(37 82)(38 83)(39 84)(40 85)(41 86)(42 87)(43 88)(44 89)(45 90)(46 61)(47 62)(48 63)(49 64)(50 65)(51 66)(52 67)(53 68)(54 69)(55 70)(56 71)(57 72)(58 73)(59 74)(60 75)
(1 34)(2 35)(3 31)(4 32)(5 33)(6 36)(7 37)(8 38)(9 39)(10 40)(11 41)(12 42)(13 43)(14 44)(15 45)(16 46)(17 47)(18 48)(19 49)(20 50)(21 51)(22 52)(23 53)(24 54)(25 55)(26 56)(27 57)(28 58)(29 59)(30 60)(61 91)(62 92)(63 93)(64 94)(65 95)(66 96)(67 97)(68 98)(69 99)(70 100)(71 101)(72 102)(73 103)(74 104)(75 105)(76 106)(77 107)(78 108)(79 109)(80 110)(81 111)(82 112)(83 113)(84 114)(85 115)(86 116)(87 117)(88 118)(89 119)(90 120)
(1 19)(2 20)(3 16)(4 17)(5 18)(6 21)(7 22)(8 23)(9 24)(10 25)(11 26)(12 27)(13 28)(14 29)(15 30)(31 46)(32 47)(33 48)(34 49)(35 50)(36 51)(37 52)(38 53)(39 54)(40 55)(41 56)(42 57)(43 58)(44 59)(45 60)(61 76)(62 77)(63 78)(64 79)(65 80)(66 81)(67 82)(68 83)(69 84)(70 85)(71 86)(72 87)(73 88)(74 89)(75 90)(91 106)(92 107)(93 108)(94 109)(95 110)(96 111)(97 112)(98 113)(99 114)(100 115)(101 116)(102 117)(103 118)(104 119)(105 120)
(1 9 14)(2 10 15)(3 6 11)(4 7 12)(5 8 13)(16 21 26)(17 22 27)(18 23 28)(19 24 29)(20 25 30)(31 36 41)(32 37 42)(33 38 43)(34 39 44)(35 40 45)(46 51 56)(47 52 57)(48 53 58)(49 54 59)(50 55 60)(61 66 71)(62 67 72)(63 68 73)(64 69 74)(65 70 75)(76 81 86)(77 82 87)(78 83 88)(79 84 89)(80 85 90)(91 96 101)(92 97 102)(93 98 103)(94 99 104)(95 100 105)(106 111 116)(107 112 117)(108 113 118)(109 114 119)(110 115 120)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)(81 82 83 84 85)(86 87 88 89 90)(91 92 93 94 95)(96 97 98 99 100)(101 102 103 104 105)(106 107 108 109 110)(111 112 113 114 115)(116 117 118 119 120)
(1 94)(2 91 5 92)(3 93 4 95)(6 103 7 105)(8 102 10 101)(9 104)(11 98 12 100)(13 97 15 96)(14 99)(16 108 17 110)(18 107 20 106)(19 109)(21 118 22 120)(23 117 25 116)(24 119)(26 113 27 115)(28 112 30 111)(29 114)(31 63 32 65)(33 62 35 61)(34 64)(36 73 37 75)(38 72 40 71)(39 74)(41 68 42 70)(43 67 45 66)(44 69)(46 78 47 80)(48 77 50 76)(49 79)(51 88 52 90)(53 87 55 86)(54 89)(56 83 57 85)(58 82 60 81)(59 84)

G:=sub<Sym(120)| (1,109)(2,110)(3,106)(4,107)(5,108)(6,111)(7,112)(8,113)(9,114)(10,115)(11,116)(12,117)(13,118)(14,119)(15,120)(16,91)(17,92)(18,93)(19,94)(20,95)(21,96)(22,97)(23,98)(24,99)(25,100)(26,101)(27,102)(28,103)(29,104)(30,105)(31,76)(32,77)(33,78)(34,79)(35,80)(36,81)(37,82)(38,83)(39,84)(40,85)(41,86)(42,87)(43,88)(44,89)(45,90)(46,61)(47,62)(48,63)(49,64)(50,65)(51,66)(52,67)(53,68)(54,69)(55,70)(56,71)(57,72)(58,73)(59,74)(60,75), (1,34)(2,35)(3,31)(4,32)(5,33)(6,36)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,97)(68,98)(69,99)(70,100)(71,101)(72,102)(73,103)(74,104)(75,105)(76,106)(77,107)(78,108)(79,109)(80,110)(81,111)(82,112)(83,113)(84,114)(85,115)(86,116)(87,117)(88,118)(89,119)(90,120), (1,19)(2,20)(3,16)(4,17)(5,18)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60)(61,76)(62,77)(63,78)(64,79)(65,80)(66,81)(67,82)(68,83)(69,84)(70,85)(71,86)(72,87)(73,88)(74,89)(75,90)(91,106)(92,107)(93,108)(94,109)(95,110)(96,111)(97,112)(98,113)(99,114)(100,115)(101,116)(102,117)(103,118)(104,119)(105,120), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60)(61,66,71)(62,67,72)(63,68,73)(64,69,74)(65,70,75)(76,81,86)(77,82,87)(78,83,88)(79,84,89)(80,85,90)(91,96,101)(92,97,102)(93,98,103)(94,99,104)(95,100,105)(106,111,116)(107,112,117)(108,113,118)(109,114,119)(110,115,120), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,94)(2,91,5,92)(3,93,4,95)(6,103,7,105)(8,102,10,101)(9,104)(11,98,12,100)(13,97,15,96)(14,99)(16,108,17,110)(18,107,20,106)(19,109)(21,118,22,120)(23,117,25,116)(24,119)(26,113,27,115)(28,112,30,111)(29,114)(31,63,32,65)(33,62,35,61)(34,64)(36,73,37,75)(38,72,40,71)(39,74)(41,68,42,70)(43,67,45,66)(44,69)(46,78,47,80)(48,77,50,76)(49,79)(51,88,52,90)(53,87,55,86)(54,89)(56,83,57,85)(58,82,60,81)(59,84)>;

G:=Group( (1,109)(2,110)(3,106)(4,107)(5,108)(6,111)(7,112)(8,113)(9,114)(10,115)(11,116)(12,117)(13,118)(14,119)(15,120)(16,91)(17,92)(18,93)(19,94)(20,95)(21,96)(22,97)(23,98)(24,99)(25,100)(26,101)(27,102)(28,103)(29,104)(30,105)(31,76)(32,77)(33,78)(34,79)(35,80)(36,81)(37,82)(38,83)(39,84)(40,85)(41,86)(42,87)(43,88)(44,89)(45,90)(46,61)(47,62)(48,63)(49,64)(50,65)(51,66)(52,67)(53,68)(54,69)(55,70)(56,71)(57,72)(58,73)(59,74)(60,75), (1,34)(2,35)(3,31)(4,32)(5,33)(6,36)(7,37)(8,38)(9,39)(10,40)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(25,55)(26,56)(27,57)(28,58)(29,59)(30,60)(61,91)(62,92)(63,93)(64,94)(65,95)(66,96)(67,97)(68,98)(69,99)(70,100)(71,101)(72,102)(73,103)(74,104)(75,105)(76,106)(77,107)(78,108)(79,109)(80,110)(81,111)(82,112)(83,113)(84,114)(85,115)(86,116)(87,117)(88,118)(89,119)(90,120), (1,19)(2,20)(3,16)(4,17)(5,18)(6,21)(7,22)(8,23)(9,24)(10,25)(11,26)(12,27)(13,28)(14,29)(15,30)(31,46)(32,47)(33,48)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60)(61,76)(62,77)(63,78)(64,79)(65,80)(66,81)(67,82)(68,83)(69,84)(70,85)(71,86)(72,87)(73,88)(74,89)(75,90)(91,106)(92,107)(93,108)(94,109)(95,110)(96,111)(97,112)(98,113)(99,114)(100,115)(101,116)(102,117)(103,118)(104,119)(105,120), (1,9,14)(2,10,15)(3,6,11)(4,7,12)(5,8,13)(16,21,26)(17,22,27)(18,23,28)(19,24,29)(20,25,30)(31,36,41)(32,37,42)(33,38,43)(34,39,44)(35,40,45)(46,51,56)(47,52,57)(48,53,58)(49,54,59)(50,55,60)(61,66,71)(62,67,72)(63,68,73)(64,69,74)(65,70,75)(76,81,86)(77,82,87)(78,83,88)(79,84,89)(80,85,90)(91,96,101)(92,97,102)(93,98,103)(94,99,104)(95,100,105)(106,111,116)(107,112,117)(108,113,118)(109,114,119)(110,115,120), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80)(81,82,83,84,85)(86,87,88,89,90)(91,92,93,94,95)(96,97,98,99,100)(101,102,103,104,105)(106,107,108,109,110)(111,112,113,114,115)(116,117,118,119,120), (1,94)(2,91,5,92)(3,93,4,95)(6,103,7,105)(8,102,10,101)(9,104)(11,98,12,100)(13,97,15,96)(14,99)(16,108,17,110)(18,107,20,106)(19,109)(21,118,22,120)(23,117,25,116)(24,119)(26,113,27,115)(28,112,30,111)(29,114)(31,63,32,65)(33,62,35,61)(34,64)(36,73,37,75)(38,72,40,71)(39,74)(41,68,42,70)(43,67,45,66)(44,69)(46,78,47,80)(48,77,50,76)(49,79)(51,88,52,90)(53,87,55,86)(54,89)(56,83,57,85)(58,82,60,81)(59,84) );

G=PermutationGroup([[(1,109),(2,110),(3,106),(4,107),(5,108),(6,111),(7,112),(8,113),(9,114),(10,115),(11,116),(12,117),(13,118),(14,119),(15,120),(16,91),(17,92),(18,93),(19,94),(20,95),(21,96),(22,97),(23,98),(24,99),(25,100),(26,101),(27,102),(28,103),(29,104),(30,105),(31,76),(32,77),(33,78),(34,79),(35,80),(36,81),(37,82),(38,83),(39,84),(40,85),(41,86),(42,87),(43,88),(44,89),(45,90),(46,61),(47,62),(48,63),(49,64),(50,65),(51,66),(52,67),(53,68),(54,69),(55,70),(56,71),(57,72),(58,73),(59,74),(60,75)], [(1,34),(2,35),(3,31),(4,32),(5,33),(6,36),(7,37),(8,38),(9,39),(10,40),(11,41),(12,42),(13,43),(14,44),(15,45),(16,46),(17,47),(18,48),(19,49),(20,50),(21,51),(22,52),(23,53),(24,54),(25,55),(26,56),(27,57),(28,58),(29,59),(30,60),(61,91),(62,92),(63,93),(64,94),(65,95),(66,96),(67,97),(68,98),(69,99),(70,100),(71,101),(72,102),(73,103),(74,104),(75,105),(76,106),(77,107),(78,108),(79,109),(80,110),(81,111),(82,112),(83,113),(84,114),(85,115),(86,116),(87,117),(88,118),(89,119),(90,120)], [(1,19),(2,20),(3,16),(4,17),(5,18),(6,21),(7,22),(8,23),(9,24),(10,25),(11,26),(12,27),(13,28),(14,29),(15,30),(31,46),(32,47),(33,48),(34,49),(35,50),(36,51),(37,52),(38,53),(39,54),(40,55),(41,56),(42,57),(43,58),(44,59),(45,60),(61,76),(62,77),(63,78),(64,79),(65,80),(66,81),(67,82),(68,83),(69,84),(70,85),(71,86),(72,87),(73,88),(74,89),(75,90),(91,106),(92,107),(93,108),(94,109),(95,110),(96,111),(97,112),(98,113),(99,114),(100,115),(101,116),(102,117),(103,118),(104,119),(105,120)], [(1,9,14),(2,10,15),(3,6,11),(4,7,12),(5,8,13),(16,21,26),(17,22,27),(18,23,28),(19,24,29),(20,25,30),(31,36,41),(32,37,42),(33,38,43),(34,39,44),(35,40,45),(46,51,56),(47,52,57),(48,53,58),(49,54,59),(50,55,60),(61,66,71),(62,67,72),(63,68,73),(64,69,74),(65,70,75),(76,81,86),(77,82,87),(78,83,88),(79,84,89),(80,85,90),(91,96,101),(92,97,102),(93,98,103),(94,99,104),(95,100,105),(106,111,116),(107,112,117),(108,113,118),(109,114,119),(110,115,120)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80),(81,82,83,84,85),(86,87,88,89,90),(91,92,93,94,95),(96,97,98,99,100),(101,102,103,104,105),(106,107,108,109,110),(111,112,113,114,115),(116,117,118,119,120)], [(1,94),(2,91,5,92),(3,93,4,95),(6,103,7,105),(8,102,10,101),(9,104),(11,98,12,100),(13,97,15,96),(14,99),(16,108,17,110),(18,107,20,106),(19,109),(21,118,22,120),(23,117,25,116),(24,119),(26,113,27,115),(28,112,30,111),(29,114),(31,63,32,65),(33,62,35,61),(34,64),(36,73,37,75),(38,72,40,71),(39,74),(41,68,42,70),(43,67,45,66),(44,69),(46,78,47,80),(48,77,50,76),(49,79),(51,88,52,90),(53,87,55,86),(54,89),(56,83,57,85),(58,82,60,81),(59,84)]])

72 conjugacy classes

class 1 2A···2G2H···2O 3 4A···4P 5 6A···6G6H···6O10A···10G15A15B30A···30N
order12···22···234···456···66···610···10151530···30
size11···15···5215···1542···210···104···4444···4

72 irreducible representations

dim1111122224444
type++++-+-++
imageC1C2C2C4C4S3Dic3D6Dic3F5C2×F5C3⋊F5C2×C3⋊F5
kernelC23×C3⋊F5C22×C3⋊F5D5×C22×C6D5×C2×C6C22×C30C23×D5C22×D5C22×D5C22×C10C22×C6C2×C6C23C22
# reps1141142177117214

Matrix representation of C23×C3⋊F5 in GL8(𝔽61)

10000000
01000000
006000000
000600000
000060000
000006000
000000600
000000060
,
600000000
060000000
006000000
000600000
00001000
00000100
00000010
00000001
,
600000000
060000000
00100000
00010000
00001000
00000100
00000010
00000001
,
4556000000
3615000000
0045560000
0036150000
00001000
00000100
00000010
00000001
,
10000000
01000000
00100000
00010000
00000100
00000010
00000001
000060606060
,
5455000000
497000000
0054550000
004970000
000060000
000000060
000006000
00001111

G:=sub<GL(8,GF(61))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60],[60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[60,0,0,0,0,0,0,0,0,60,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[45,36,0,0,0,0,0,0,56,15,0,0,0,0,0,0,0,0,45,36,0,0,0,0,0,0,56,15,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,60,0,0,0,0,1,0,0,60,0,0,0,0,0,1,0,60,0,0,0,0,0,0,1,60],[54,49,0,0,0,0,0,0,55,7,0,0,0,0,0,0,0,0,54,49,0,0,0,0,0,0,55,7,0,0,0,0,0,0,0,0,60,0,0,1,0,0,0,0,0,0,60,1,0,0,0,0,0,0,0,1,0,0,0,0,0,60,0,1] >;

C23×C3⋊F5 in GAP, Magma, Sage, TeX

C_2^3\times C_3\rtimes F_5
% in TeX

G:=Group("C2^3xC3:F5");
// GroupNames label

G:=SmallGroup(480,1206);
// by ID

G=gap.SmallGroup(480,1206);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-5,112,2693,14118,1210]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^3=e^5=f^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,f*d*f^-1=d^-1,f*e*f^-1=e^3>;
// generators/relations

׿
×
𝔽